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L ast lecture

 Dynamic memory allocation

« Memory re-allocation to grow arrays

e Linked lists




Aside: do not use variable sized arrays

« Variable length arrays are NOT valid in C++
— Sadly, gcc on avon, bann etc will allow them in C++

e E.Q.
Int myfunc( int 1Size )
{
char array[iSize];
}

« Size of array is not a constant, it depends upon the value of variable

e You must use a numeric literal or a constant for a size
— You can use a #define to set it to a literal (see later)

» If you need variable size arrays, use malloc() or new

e Use: g++ -pedantic myfile.cpp to get a warning




This lecture
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— Constants, including pointers

The C pre-processor

— And macros

Compiling and linking

— And multiple header files
Linkage and visibility




const

Defensive programming




const : constant/unchanging

const ant variables cannot be changed
E.Q. const Int maxvalue =4;
Or Int const maxvalue =4;

Not really ‘variable’s anymore? Cannot be ‘varied’

#define could have same effect — see later
— But, using text replacement in the preprocessor

const Is nicer for declaring constants

— Multiple contradictory definitions will be caught
— Unlike for #define




Pointers to constant data

The thing pointed at through a pointer to const
cannot be changed using the pointer

E.Q. const char* p = “Hello”;
Or char const * p = “Hello”;

Note: const is to the left of the *

The following code will NOT compile:

const char* pc = "Hello";

*pc = 'B'; /[ BAD
String literals should be const char  * not char *
and good compilers will ensure this (warnings)




Constant pointers

* You can also prevent the pointer itself from
being changed, by using const . E.g.:
char* const p ="“Hello”;

Note: the const s to the right of the *

e You cannot change this pointer to make it
point at something else

* The following code will not compile:
char* const cp = "Hello";

cp = "Bye"; /[ BAD

— I.e. catch errors at compilation!




For pointers, it matters where the const Is

For constant pointers it matters which side of the *
the const Is:

 The pointer Is constant — constant short * :
short * const pcs=&s ;

 The short pointed at cannot be changed through
the pointer — pointer to constant short

short const *cps = &s;
const short * cps = &S ;

e Can change neither pointer nor thing pointed at :
short const * const cpcs = &s;
const short* const cpcs =4&s;




How to remember this...

 Read backwards with * meaning ‘pointer to’

float * const pcf = &f;

— “Constant pointer to a float”
The pointer is constant — constant float*

float const * cpf = &f;
— “Pointer to constant float”
const float * cpf = &f; (same as float const * )

— “Pointer to float which is constant”
The float pointed at cannot be changed through the pointer

const float * const cpcf = &f;

— “Constant pointer to float which is constant”

Neither the pointer nor the thing it points at can be changed
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String literals again

String literals should not be changed
l.e. use const pointers

Should use:

const char* str ="Hello”;
Not:

char* str ="Hello”;

Compiler should give warnings otherwise
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Volatile and register

(so that you know that they exist)




‘'volatile’ and ‘register’ keywords

 The volatile keyword is important if other threads or
processes may access the data
— Know that it exists and when you should use it

« Tells the compiler that data may change outside thread
or program (similar meaning in Java)

« Will turn off some potential optimisations

— Value must be checked every time it is needed
— Compiler cannot assume it is unchanged

Example:
volatile intv = 4;
volatile float f = 16.7f;

* Another one to know: the ‘register ' keyword
— Request to store value in a register not a variable
— Again, know that it exists and what it does
— Not usually needed with modern optimising compilers 13




The C/C++ pre-processor




The C/C++ Preprocessor

 Runs BEFORE passing code to the compiler

— Compiler will only see the code after the pre-
processor has changed it

o |t affects statements beginning with #

 Examples:
— #include
— #define, #undef
— #if, #ifdef, #ifndef, #else, #endif
— #pragma
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#include

Replaces this statement by the text of the specified file

— For example, to include function declarations

E.g. #include <stdio.h>

— Include the file with standard input/output function declarations in it
(e.g. printf )

— Looks in the directories on the include path

— Normally used for system header files

— Note: C++ standard header files may differ — but same effects

E.g. #include “myheader.h”

— The *” usually means look in the project path as well as the main
iInclude path

— Normally used for your own, project-specific header files
Do not confuse with Java’s ‘import '

— import defines the packages to look in for resolving class names
(more like the C++ keyword using , but still different)

— #include replaces the line, potentially with function declarations
16




Using multiple files




Reminder

* Declare functions before usage
— Called function prototyping

— Definitions are also declarations
* S0, sorting functions into reverse order works - all declared before use

* €e.0.:
int  myfuncl (int); <— Note: no paramdet(cajr
- . names are needed.
iInt  myfunc2 (int); < The return type,
function name and
Int main( int argc, char* argv[] ) parameter types
{ return myfuncl (argc); } must be specified

int myfuncl (intil)

{ return myfunc2 (i1) + 1; }
int  myfunc2 (inti2)

{return 1 +i2; }
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Sharing things between files

 In general, you can put functions (and classes) in any
files you wish (the filename is totally unimportant)

* Global variables and functions are always accessible
from anywhere within the same file
— You can hide them from other files by using the static
keyword, e.g. :
static int g_hidden =1,
— They are then accessible everywhere within the same file but
not from other files

* If not static (i.e. hidden), then:
— You can access global functions from other files
« Just declare them and the linker will do the work
— You can access global variables from other files
» Use the keyword ‘extern ’in a declaration

e extern changes a definition into a declaration o




Visibility (Linkage)

e \WWhat can be seen where?

Filel.cpp

static int hidden_in_file;
Int visible from_outside;

static void myintfunc()

{
}

void myextfunc( char c)

{

Int local var = 2;

static int persistant = 4;

myintfunc();

File2.cpp

extern int
visible from_outside;

void myextfunc( char );

void myfunc()

{

char c = 4;
myextfunc( c )




Key Idea: Encapsulation

The idea of hiding the internals — the data

— Give access to the data to as few ‘things’ as possible
— 1.e. hide it as much as possible

Controlling the interface which can be seen
Why?

— Helps with debugging and structure

— You can see what can alter each thing

C encapsulation can be performed using files

— External interface (global functions)

— Internal functions (static global functions)

C++/Java use classes (much more control)
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Summary: the static  keyword

e static  Is used for three different things

— For local variables

e static means the value is maintained between
function calls

— For global variables and functions
o static  limits visibility/access to within the file

— For C++ (not Cl!) classes:

 Method or variable is associated with the class not
the object (one copy per class, no this pointer)

e The same as Java for this one
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Compiling and linking




Types of files

e Source code files, named .cpp or .c
— Contain your functions and classes

 Header files, named .h or .hpp

— Declarations for all functions which you want to
make available to other files
* i.e. function name, return type, parameter types

— Declarations for classes, in C++

— Any constants you want to make available
— Any #defines to apply to other files

— Anything else you want to share

e Library files, named .o, .lib, ...
— Already compiled
— Contain implementation of library functions
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Compiling and linking
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Compiling and linking

Source Code
(.c or .cpp)

>

Preprocessor

Header Files
(.h or .hpp)

'

/

Compiler

|

Object code files

(Optional: .o, .obj, ..

)

You can just compile to object code files (not link):

gcc —c <.c files>

-0 <output_file>
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Compiling and linking

You can then link the files by passing the .o

files to gcc (instead of the .c files)
gcc <.ofiles> -0 <output_file>

Static libraries

Object code files

(Optional: .o, .obj, ..

)

|

(.0 or .lib)

— Linker

l

Executable

Shared/dynamic library
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Compiling with gcc

e gcc uses the file extension to determine
file type when compliling/linking:
— .c for C files
— .cpp (and others) for C++ files
— .0 for object code files (Just need linking)

o Standard C library is linked by default
when compiling C code

 \When compiling C++ you need to link In
the standard C++ library files manually
—e.g. use -Istdc  ++ on gcc command line

— or (often) can use g++ Instead of gcc
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#define and #ifdef




#define

An intelligent find and replace’ facility

Often considered bad in C++ code (useful in C)
— const Is used more often, especially for members
— Template functions are better than macros
Example: define a ‘constant’:

— #define MAX_ENTRIES 100

— Replace occurrences of “MAX ENTRIES by the text
“100” (without quotes), e.g. In:

if (entry_ num <MAX ENTRIES ) {...}

Remember: Done by the pre-processor!
— E.g. NOT actually a definition of a constant

‘Constant’ #define s usually written in CAPITALS
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Conditional complilation

You can remove parts of the source code If desired
— Done by the pre-processor (not compiled)

E.g. Only include code If some name has been
defined earlier (in the code or included header file)

#ifdef <NAME_OF DEFINE>

<Include this code if it was defined>
#Helse

<Include this code if it was not defined>
#endif

To include only ‘if not defined’ use #ifndef
There Is also a #if <condition>
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Conditional complilation

Platform-dependent code can be included

e.g. Include only if on a specific machine:
#ifdef  WINDOWS

... windows code here ...

#elif  SYSHUNIX

... System 5 code here ...

#endif

Often used for cross-platform code

The correct #define has to be made
somewhere to specify the current platform

Know that this can be done, recognise it
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Avoiding multiple inclusion

e Code to include the contents of a file only once:

#ifndef UNIQUE_DEFINE_NAME_ FOR_FILE
#define UNIQUE_DEFINE_NAME_FOR_FILE
... Include the rest of the file here ...

#endif

 To work, the name In the #define has to be
unique throughout the program

— E.g. you probably should include the path of the
header file, not just the filename

— Example: mycode/game/graphics/screen.h could be
called MYCODE_GAME_GRAPHICS _SCREEN_H

— By convention, #defines are in upper case
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Three rules for header files

1. Ensure that the header file #include s
everything that it needs itself
— l.e. #include any headers it depends upon

2. Ensure that it doesn’'t matter If the
header file Is included multiple times

— See previous slide

3. Ensure that header files can be included
In any order

— A consequence of the first two rules
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#define and macro definitions

e YOU can use #define to define a macro:
#define max(a,b) (((a)>(b)) ? (a) : (b))

int vl = max( 40, 234 );
int vl = (((40)>(234)) ? (40) : (234))

Int v2 = max(vl, 99);
int v2 =(((v1)>(99)) ? (v1) : (99))

Int v3 =max (vl, v2);
Int v3 = (((v1)>(v2)) ? (v1) : (v2))

« Remember: done by the pre-processor!
— NOT a function call
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What Is the output here?

MyHeader.h

#ifndef MY_HEADER_H
#define MY _HEADER_H

#define max(a,b) (((a)>(b)) ? (a) : (b))

#endif

MyTest.cpp

#include <cstdio>

#include “MyHeader.h”
int main( int argc, char* argv[] )

{
int a=1,b=1;
while (a<10)
{
printf( “a = %d, b =%d “, a, b );
printf( “max = %d\n”, max(a++,b++ ) );
}




The (surprise?) output

printf(“a=%d, b=%d “, a, b);
printf( “max = %d\n”, max(a++,b++) );

« The output is:
a=1,b=1max=2
b=3max=4
b=5max=6
b=7max =8
b=9max =10
b=11 max =12
b=13max =14
b=15max =16
b=17 max =18
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max( a++, b++) expands to:
((at++)>(b++)) ? (a++) : (b++)

* So, whichever number is greater will get incremented
twice, and the lesser number only once 37




Next lecture

e class es (and C++ struct

e Member functions

e Inline

functions

S)
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