
1

G52CPP
C++ Programming

Lecture 8

Dr Jason Atkin

http://www.cs.nott.ac.uk/~jaa/cpp/
g52cpp.html

2

Last lecture

• Dynamic memory allocation

• Memory re-allocation to grow arrays

• Linked lists

Aside: do not use variable sized arrays
• Variable length arrays are NOT valid in C++

– Sadly, gcc on avon, bann etc will allow them in C++

• E.g.:
int myfunc(int iSize)

{

char array[iSize];

…

}

• Size of array is not a constant, it depends upon the value of variable
• You must use a numeric literal or a constant for a size

– You can use a #define to set it to a literal (see later)

• If you need variable size arrays, use malloc() or new

• Use: g++ -pedantic myfile.cpp to get a warning

3

4

This lecture

• const
– Constants, including pointers

• The C pre-processor
– And macros

• Compiling and linking
– And multiple header files

• Linkage and visibility

5

const

Defensive programming

6

const : constant/unchanging
• const ant variables cannot be changed
• E.g. const int maxvalue = 4;

• Or int const maxvalue = 4;

• Not really ‘variable’s anymore? Cannot be ‘varied’

• #define could have same effect – see later
– But, using text replacement in the preprocessor

• const is nicer for declaring constants
– Multiple contradictory definitions will be caught
– Unlike for #define

7

Pointers to constant data
• The thing pointed at through a pointer to const

cannot be changed using the pointer
• E.g. const char* p = “Hello”;

• Or char const * p = “Hello”;

• Note: const is to the left of the *

• The following code will NOT compile:
const char* pc = "Hello";

*pc = 'B'; // BAD

• String literals should be const char * not char *
and good compilers will ensure this (warnings)

8

Constant pointers

• You can also prevent the pointer itself from
being changed, by using const . E.g.:

char* const p = “Hello”;

Note: the const is to the right of the *

• You cannot change this pointer to make it
point at something else

• The following code will not compile:
char* const cp = "Hello";

cp = "Bye"; // BAD

– i.e. catch errors at compilation!

9

For pointers, it matters where the const is

For constant pointers it matters which side of the *
the const is:

• The pointer is constant – constant short * :
short * const pcs = &s ;

• The short pointed at cannot be changed through
the pointer – pointer to constant short :

short const * cps = &s;

const short * cps = &s ;

• Can change neither pointer nor thing pointed at :
short const * const cpcs = &s;

const short * const cpcs = &s ;

10

How to remember this…
• Read backwards with * meaning ‘pointer to’

float * const pcf = &f;
– “Constant pointer to a float”

The pointer is constant – constant float*

float const * cpf = &f;
– “Pointer to constant float”

const float * cpf = &f; (same as float const *)
– “Pointer to float which is constant”

The float pointed at cannot be changed through the pointer

const float * const cpcf = &f;
– “Constant pointer to float which is constant”

Neither the pointer nor the thing it points at can be changed

String literals again

• String literals should not be changed
• i.e. use const pointers

• Should use:
const char* str = “Hello”;

• Not:
char* str = “Hello”;

• Compiler should give warnings otherwise
11

12

Volatile and register

(so that you know that they exist)

13

‘volatile’ and ‘register’ keywords
• The volatile keyword is important if other threads or

processes may access the data
– Know that it exists and when you should use it

• Tells the compiler that data may change outside thread
or program (similar meaning in Java)

• Will turn off some potential optimisations
– Value must be checked every time it is needed
– Compiler cannot assume it is unchanged

Example:
volatile int v = 4;
volatile float f = 16.7f;

• Another one to know: the ‘register ’ keyword
– Request to store value in a register not a variable
– Again, know that it exists and what it does
– Not usually needed with modern optimising compilers

14

The C/C++ pre-processor

15

The C/C++ Preprocessor

• Runs BEFORE passing code to the compiler
– Compiler will only see the code after the pre-

processor has changed it

• It affects statements beginning with #

• Examples:
– #include

– #define, #undef

– #if, #ifdef, #ifndef, #else, #endif

– #pragma

16

#include
• Replaces this statement by the text of the specified file

– For example, to include function declarations
• E.g. #include <stdio.h>

– Include the file with standard input/output function declarations in it
(e.g. printf)

– Looks in the directories on the include path
– Normally used for system header files
– Note: C++ standard header files may differ – but same effects

• E.g. #include “myheader.h”

– The “” usually means look in the project path as well as the main
include path

– Normally used for your own, project-specific header files
• Do not confuse with Java’s ‘import ’:

– import defines the packages to look in for resolving class names
(more like the C++ keyword using , but still different)

– #include replaces the line, potentially with function declarations

17

Using multiple files

18

Reminder

• Declare functions before usage
– Called function prototyping
– Definitions are also declarations

• So, sorting functions into reverse order works - all declared before use

• e.g.:
int myfunc1 (int);

int myfunc2 (int);

int main(int argc, char* argv[])

{ return myfunc1 (argc); }

int myfunc1 (int i1)

{ return myfunc2 (i1) + 1; }

int myfunc2 (int i2)

{ return 1 + i2; }

Note: no parameter
names are needed.
The return type,

function name and
parameter types
must be specified

19

Sharing things between files
• In general, you can put functions (and classes) in any

files you wish (the filename is totally unimportant)

• Global variables and functions are always accessible
from anywhere within the same file
– You can hide them from other files by using the static

keyword, e.g. :
static int g_hidden = 1;
– They are then accessible everywhere within the same file but

not from other files

• If not static (i.e. hidden), then:
– You can access global functions from other files

• Just declare them and the linker will do the work
– You can access global variables from other files

• Use the keyword ‘extern ’ in a declaration
• extern changes a definition into a declaration

20

Visibility (Linkage)

• What can be seen where?

static int hidden_in_file;
int visible_from_outside;

static void myintfunc()
{
}

void myextfunc(char c)
{

int local_var = 2;
static int persistant = 4;
myintfunc();

}

extern int
visible_from_outside;

void myextfunc(char);

void myfunc()
{

char c = 4;
myextfunc(c)

}

File1.cpp

File2.cpp

21

Key Idea: Encapsulation
• The idea of hiding the internals – the data

– Give access to the data to as few ‘things’ as possible
– i.e. hide it as much as possible

• Controlling the interface which can be seen
• Why?

– Helps with debugging and structure
– You can see what can alter each thing

• C encapsulation can be performed using files
– External interface (global functions)
– Internal functions (static global functions)

• C++/Java use classes (much more control)

22

Summary: the static keyword

• static is used for three different things
– For local variables

• static means the value is maintained between
function calls

– For global variables and functions
• static limits visibility/access to within the file

– For C++ (not C!) classes:
• Method or variable is associated with the class not

the object (one copy per class, no this pointer)
• The same as Java for this one

23

Compiling and linking

24

Types of files
• Source code files, named .cpp or .c

– Contain your functions and classes

• Header files, named .h or .hpp
– Declarations for all functions which you want to

make available to other files
• i.e. function name, return type, parameter types

– Declarations for classes, in C++
– Any constants you want to make available
– Any #defines to apply to other files

– Anything else you want to share

• Library files, named .o, .lib, …
– Already compiled
– Contain implementation of library functions

25

Compiling and linking

Compiler

Linker

Object code files
(Optional: .o, .obj, …)

Shared/dynamic libraryExecutable

Source Code
(.c or .cpp)

Header Files
(.h or .hpp)

Static libraries
(.o or .lib)

Preprocessor

gcc <.c files> -o <output_file>

26

Compiling and linking

Compiler

Object code files
(Optional: .o, .obj, …)

Source Code
(.c or .cpp)

Header Files
(.h or .hpp)

Preprocessor

You can just compile to object code files (not link):
gcc –c <.c files> -o <output_file>

27

Compiling and linking

Linker

Object code files
(Optional: .o, .obj, …)

Shared/dynamic libraryExecutable

Static libraries
(.o or .lib)

You can then link the files by passing the .o
files to gcc (instead of the .c files)
gcc <.o files> -o <output_file>

28

Compiling with gcc

• gcc uses the file extension to determine
file type when compiling/linking:
– .c for C files
– .cpp (and others) for C++ files
– .o for object code files (just need linking)

• Standard C library is linked by default
when compiling C code

• When compiling C++ you need to link in
the standard C++ library files manually
– e.g. use -lstdc ++ on gcc command line
– or (often) can use g++ instead of gcc

29

#define and #ifdef

30

#define
• An intelligent ‘find and replace’ facility
• Often considered bad in C++ code (useful in C)

– const is used more often, especially for members
– Template functions are better than macros

• Example: define a ‘constant’:
– #define MAX_ENTRIES 100

– Replace occurrences of “MAX_ENTRIES” by the text
“100 ” (without quotes), e.g. in:

if (entry_num < MAX_ENTRIES) { … }

• Remember: Done by the pre-processor!
– E.g. NOT actually a definition of a constant

• ‘Constant’ #define s usually written in CAPITALS

31

Conditional compilation

• You can remove parts of the source code if desired
– Done by the pre-processor (not compiled)

• E.g. Only include code if some name has been
defined earlier (in the code or included header file)
#ifdef <NAME_OF_DEFINE>

<Include this code if it was defined>

#else

<Include this code if it was not defined>

#endif

• To include only ‘if not defined’ use #ifndef

• There is also a #if <condition>

32

Conditional compilation
• Platform-dependent code can be included
• e.g. Include only if on a specific machine:

#ifdef __WINDOWS__

… windows code here …

#elif __SYS5UNIX__

… System 5 code here …

#endif

• Often used for cross-platform code
• The correct #define has to be made

somewhere to specify the current platform
• Know that this can be done, recognise it

33

Avoiding multiple inclusion

• Code to include the contents of a file only once:
#ifndef UNIQUE_DEFINE_NAME_FOR_FILE

#define UNIQUE_DEFINE_NAME_FOR_FILE

… include the rest of the file here …

#endif

• To work, the name in the #define has to be
unique throughout the program
– E.g. you probably should include the path of the

header file, not just the filename
– Example: mycode/game/graphics/screen.h could be

called MYCODE_GAME_GRAPHICS_SCREEN_H

– By convention, #defines are in upper case

34

Three rules for header files

1. Ensure that the header file #include s
everything that it needs itself

– i.e. #include any headers it depends upon

2. Ensure that it doesn’t matter if the
header file is included multiple times

– See previous slide

3. Ensure that header files can be included
in any order

– A consequence of the first two rules

35

#define and macro definitions
• You can use #define to define a macro:

#define max(a,b) (((a)>(b)) ? (a) : (b))

int v1 = max(40, 234);

int v1 = (((40)>(234)) ? (40) : (234))

int v2 = max(v1, 99);

int v2 = (((v1)>(99)) ? (v1) : (99))

int v3 = max (v1, v2);

int v3 = (((v1)>(v2)) ? (v1) : (v2))

• Remember: done by the pre-processor!
– NOT a function call

36

What is the output here?

#ifndef MY_HEADER_H
#define MY_HEADER_H

#define max(a,b) (((a)>(b)) ? (a) : (b))

#endif

#include <cstdio>
#include “MyHeader.h”
int main(int argc, char* argv[])
{

int a = 1, b = 1;
while (a < 10)
{

printf(“a = %d, b = %d “, a, b);
printf(“max = %d\n”, max(a++,b++));

}
}

MyHeader.h

MyTest.cpp

37

The (surprise?) output
printf(“a = %d, b = %d “, a, b);
printf(“max = %d\n”, max(a++,b++));
• The output is:

a = 1, b = 1 max = 2
a = 2, b = 3 max = 4
a = 3, b = 5 max = 6
a = 4, b = 7 max = 8
a = 5, b = 9 max = 10
a = 6, b = 11 max = 12
a = 7, b = 13 max = 14
a = 8, b = 15 max = 16
a = 9, b = 17 max = 18

• Why?
max(a++, b++) expands to:

((a++)>(b++)) ? (a++) : (b++)
• So, whichever number is greater will get incremented

twice, and the lesser number only once

38

Next lecture

• class es (and C++ struct s)

• Member functions

• inline functions

