G52CPP
C++ Programming
Lecture 8

Dr Jason Atkin

http://www.cs.nott.ac.uk/~jaa/cpp/
g52cpp.html

L ast lecture

 Dynamic memory allocation

« Memory re-allocation to grow arrays

e Linked lists

Aside: do not use variable sized arrays

« Variable length arrays are NOT valid in C++
— Sadly, gcc on avon, bann etc will allow them in C++

e E.Q.
Int myfunc(int 1Size)
{
char array[iSize];
}

« Size of array is not a constant, it depends upon the value of variable

e You must use a numeric literal or a constant for a size
— You can use a #define to set it to a literal (see later)

» If you need variable size arrays, use malloc() or new

e Use: g++ -pedantic myfile.cpp to get a warning

This lecture

const
— Constants, including pointers

The C pre-processor

— And macros

Compiling and linking

— And multiple header files
Linkage and visibility

const

Defensive programming

const : constant/unchanging

const ant variables cannot be changed
E.Q. const Int maxvalue =4;
Or Int const maxvalue =4;

Not really ‘variable’s anymore? Cannot be ‘varied’

#define could have same effect — see later
— But, using text replacement in the preprocessor

const Is nicer for declaring constants

— Multiple contradictory definitions will be caught
— Unlike for #define

Pointers to constant data

The thing pointed at through a pointer to const
cannot be changed using the pointer

E.Q. const char* p = “Hello”;
Or char const * p = “Hello”;

Note: const is to the left of the *

The following code will NOT compile:

const char* pc = "Hello";

*pc = 'B'; /[BAD
String literals should be const char * not char *
and good compilers will ensure this (warnings)

Constant pointers

* You can also prevent the pointer itself from
being changed, by using const . E.g.:
char* const p ="“Hello”;

Note: the const s to the right of the *

e You cannot change this pointer to make it
point at something else

* The following code will not compile:
char* const cp = "Hello";

cp = "Bye"; /[BAD

— I.e. catch errors at compilation!

For pointers, it matters where the const Is

For constant pointers it matters which side of the *
the const Is:

 The pointer Is constant — constant short * :
short * const pcs=&s ;

 The short pointed at cannot be changed through
the pointer — pointer to constant short

short const *cps = &s;
const short * cps = &S ;

e Can change neither pointer nor thing pointed at :
short const * const cpcs = &s;
const short* const cpcs =4&s;

How to remember this...

 Read backwards with * meaning ‘pointer to’

float * const pcf = &f;

— “Constant pointer to a float”
The pointer is constant — constant float*

float const * cpf = &f;
— “Pointer to constant float”
const float * cpf = &f; (same as float const *)

— “Pointer to float which is constant”
The float pointed at cannot be changed through the pointer

const float * const cpcf = &f;

— “Constant pointer to float which is constant”

Neither the pointer nor the thing it points at can be changed
10

String literals again

String literals should not be changed
l.e. use const pointers

Should use:

const char* str ="Hello”;
Not:

char* str ="Hello”;

Compiler should give warnings otherwise

11

Volatile and register

(so that you know that they exist)

‘'volatile’ and ‘register’ keywords

 The volatile keyword is important if other threads or
processes may access the data
— Know that it exists and when you should use it

« Tells the compiler that data may change outside thread
or program (similar meaning in Java)

« Will turn off some potential optimisations

— Value must be checked every time it is needed
— Compiler cannot assume it is unchanged

Example:
volatile intv = 4;
volatile float f = 16.7f;

* Another one to know: the ‘register ' keyword
— Request to store value in a register not a variable
— Again, know that it exists and what it does
— Not usually needed with modern optimising compilers 13

The C/C++ pre-processor

The C/C++ Preprocessor

 Runs BEFORE passing code to the compiler

— Compiler will only see the code after the pre-
processor has changed it

o |t affects statements beginning with #

 Examples:
— #include
— #define, #undef
— #if, #ifdef, #ifndef, #else, #endif
— #pragma

15

#include

Replaces this statement by the text of the specified file

— For example, to include function declarations

E.g. #include <stdio.h>

— Include the file with standard input/output function declarations in it
(e.g. printf)

— Looks in the directories on the include path

— Normally used for system header files

— Note: C++ standard header files may differ — but same effects

E.g. #include “myheader.h”

— The *” usually means look in the project path as well as the main
iInclude path

— Normally used for your own, project-specific header files
Do not confuse with Java’s ‘import '

— import defines the packages to look in for resolving class names
(more like the C++ keyword using , but still different)

— #include replaces the line, potentially with function declarations
16

Using multiple files

Reminder

* Declare functions before usage
— Called function prototyping

— Definitions are also declarations
* S0, sorting functions into reverse order works - all declared before use

* €e.0.:
int myfuncl (int); <— Note: no paramdet(cajr
- . names are needed.
iInt myfunc2 (int); < The return type,
function name and
Int main(int argc, char* argv[]) parameter types
{ return myfuncl (argc); } must be specified

int myfuncl (intil)

{ return myfunc2 (i1) + 1; }
int myfunc2 (inti2)

{return 1 +i2; }

18

Sharing things between files

 In general, you can put functions (and classes) in any
files you wish (the filename is totally unimportant)

* Global variables and functions are always accessible
from anywhere within the same file
— You can hide them from other files by using the static
keyword, e.g. :
static int g_hidden =1,
— They are then accessible everywhere within the same file but
not from other files

* If not static (i.e. hidden), then:
— You can access global functions from other files
« Just declare them and the linker will do the work
— You can access global variables from other files
» Use the keyword ‘extern ’in a declaration

e extern changes a definition into a declaration o

Visibility (Linkage)

e \WWhat can be seen where?

Filel.cpp

static int hidden_in_file;
Int visible from_outside;

static void myintfunc()

{
}

void myextfunc(char c)

{

Int local var = 2;

static int persistant = 4;

myintfunc();

File2.cpp

extern int
visible from_outside;

void myextfunc(char);

void myfunc()

{

char c = 4;
myextfunc(c)

Key Idea: Encapsulation

The idea of hiding the internals — the data

— Give access to the data to as few ‘things’ as possible
— 1.e. hide it as much as possible

Controlling the interface which can be seen
Why?

— Helps with debugging and structure

— You can see what can alter each thing

C encapsulation can be performed using files

— External interface (global functions)

— Internal functions (static global functions)

C++/Java use classes (much more control)

21

Summary: the static keyword

e static Is used for three different things

— For local variables

e static means the value is maintained between
function calls

— For global variables and functions
o static limits visibility/access to within the file

— For C++ (not Cl!) classes:

 Method or variable is associated with the class not
the object (one copy per class, no this pointer)

e The same as Java for this one

22

Compiling and linking

Types of files

e Source code files, named .cpp or .c
— Contain your functions and classes

 Header files, named .h or .hpp

— Declarations for all functions which you want to
make available to other files
* i.e. function name, return type, parameter types

— Declarations for classes, in C++

— Any constants you want to make available
— Any #defines to apply to other files

— Anything else you want to share

e Library files, named .o, .lib, ...
— Already compiled
— Contain implementation of library functions

24

Compiling and linking

(.cor.cp

Source Code

D)

>

Preprocessor

Header Fi
(.h or .hp

€S

D)

'

/'

Compiler

gcc <.c files> -0 <output_file>

|

Object code files

(Optional: .o, .0bj, ...)
Static libraries)
(.0 or .lib) — Linker
Executable Shared/dynamic library

25

Compiling and linking

Source Code
(.c or .cpp)

>

Preprocessor

Header Files
(.h or .hpp)

'

/

Compiler

|

Object code files

(Optional: .o, .obj, ..

)

You can just compile to object code files (not link):

gcc —c <.c files>

-0 <output_file>

26

Compiling and linking

You can then link the files by passing the .o

files to gcc (instead of the .c files)
gcc <.ofiles> -0 <output_file>

Static libraries

Object code files

(Optional: .o, .obj, ..

)

|

(.0 or .lib)

— Linker

l

Executable

Shared/dynamic library

27

Compiling with gcc

e gcc uses the file extension to determine
file type when compliling/linking:
— .c for C files
— .cpp (and others) for C++ files
— .0 for object code files (Just need linking)

o Standard C library is linked by default
when compiling C code

 \When compiling C++ you need to link In
the standard C++ library files manually
—e.g. use -Istdc ++ on gcc command line

— or (often) can use g++ Instead of gcc

28

#define and #ifdef

#define

An intelligent find and replace’ facility

Often considered bad in C++ code (useful in C)
— const Is used more often, especially for members
— Template functions are better than macros
Example: define a ‘constant’:

— #define MAX_ENTRIES 100

— Replace occurrences of “MAX ENTRIES by the text
“100” (without quotes), e.g. In:

if (entry_ num <MAX ENTRIES) {...}

Remember: Done by the pre-processor!
— E.g. NOT actually a definition of a constant

‘Constant’ #define s usually written in CAPITALS

30

Conditional complilation

You can remove parts of the source code If desired
— Done by the pre-processor (not compiled)

E.g. Only include code If some name has been
defined earlier (in the code or included header file)

#ifdef <NAME_OF DEFINE>

<Include this code if it was defined>
#Helse

<Include this code if it was not defined>
#endif

To include only ‘if not defined’ use #ifndef
There Is also a #if <condition>

31

Conditional complilation

Platform-dependent code can be included

e.g. Include only if on a specific machine:
#ifdef WINDOWS

... windows code here ...

#elif SYSHUNIX

... System 5 code here ...

#endif

Often used for cross-platform code

The correct #define has to be made
somewhere to specify the current platform

Know that this can be done, recognise it

32

Avoiding multiple inclusion

e Code to include the contents of a file only once:

#ifndef UNIQUE_DEFINE_NAME_ FOR_FILE
#define UNIQUE_DEFINE_NAME_FOR_FILE
... Include the rest of the file here ...

#endif

 To work, the name In the #define has to be
unique throughout the program

— E.g. you probably should include the path of the
header file, not just the filename

— Example: mycode/game/graphics/screen.h could be
called MYCODE_GAME_GRAPHICS _SCREEN_H

— By convention, #defines are in upper case

33

Three rules for header files

1. Ensure that the header file #include s
everything that it needs itself
— l.e. #include any headers it depends upon

2. Ensure that it doesn’'t matter If the
header file Is included multiple times

— See previous slide

3. Ensure that header files can be included
In any order

— A consequence of the first two rules

34

#define and macro definitions

e YOU can use #define to define a macro:
#define max(a,b) (((a)>(b)) ? (a) : (b))

int vl = max(40, 234);
int vl = (((40)>(234)) ? (40) : (234))

Int v2 = max(vl, 99);
int v2 =(((v1)>(99)) ? (v1) : (99))

Int v3 =max (vl, v2);
Int v3 = (((v1)>(v2)) ? (v1) : (v2))

« Remember: done by the pre-processor!
— NOT a function call

35

What Is the output here?

MyHeader.h

#ifndef MY_HEADER_H
#define MY _HEADER_H

#define max(a,b) (((a)>(b)) ? (a) : (b))

#endif

MyTest.cpp

#include <cstdio>

#include “MyHeader.h”
int main(int argc, char* argv[])

{
int a=1,b=1;
while (a<10)
{
printf(“a = %d, b =%d “, a, b);
printf(“max = %d\n”, max(a++,b++));
}

The (surprise?) output

printf(“a=%d, b=%d “, a, b);
printf(“max = %d\n”, max(a++,b++));

« The output is:
a=1,b=1max=2
b=3max=4
b=5max=6
b=7max =8
b=9max =10
b=11 max =12
b=13max =14
b=15max =16
b=17 max =18

LoOoNoOoGRrWDN

EQJQJQJQJQJQJQJQJ

-y
<

?
max(a++, b++) expands to:
((at++)>(b++)) ? (a++) : (b++)

* So, whichever number is greater will get incremented
twice, and the lesser number only once 37

Next lecture

e class es (and C++ struct

e Member functions

e Inline

functions

S)

38

